UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Riverine particulate material dissolution as a significant flux of strontium to the oceans
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Jones MT, Pearce CR, Jeandel C, Gislason SR, Eiriksdottir ES, Mavromatis V, Oelkers EH
  • Publication date:
    11/10/2012
  • Pagination:
    51, 59
  • Journal:
    Earth and Planetary Science Letters
  • Volume:
    355-356
  • Status:
    Published
  • Print ISSN:
    0012-821X
Abstract
The ratio of strontium isotopes, 87Sr/86Sr, in seawater is homogenous at any given time, yet varies considerably throughout the geological record. This variation is thought to stem from changes in the balance of predominantly radiogenic Sr entering the oceans via dissolved riverine transport, and unradiogenic Sr sourced from mid-ocean ridge hydrothermal activity. Recent evidence suggests, however, that hydrothermal exchange at mid-ocean ridges is a factor of 3 too low to balance Sr added to the oceans from dissolved continental riverine fluxes. Here we present evidence that the arrival and subsequent dissolution of riverine particulate material in seawater is a significant contributor of both radiogenic and unradiogenic Sr to the oceans. Batch experiments demonstrate that between 0.15% and 27.36% of Sr is liberated from riverine particulates to seawater within 6 months. The rates of release are dependent on surface area and particulate composition, with volcanic riverine material more reactive than continental riverine particulates. The observed rapid Sr release rate from riverine particulate material has important consequences for both chemical and isotopic mass balances in the ocean and the application of the 87Sr/86Sr weathering proxy to the geological record. The dissolution of riverine particulate material is likely, based on these findings, to at least partially account for the imbalance between Sr sources to the oceans. © 2012 Elsevier B.V.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by