UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Mineral carbonation of CO2
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Oelkers EH, Gislason SR, Matter J
  • Publication date:
    01/10/2008
  • Pagination:
    333, 337
  • Journal:
    Elements
  • Volume:
    4
  • Issue:
    5
  • Status:
    Published
  • Print ISSN:
    1811-5209
Abstract
A survey of the global carbon reservoirs suggests that the most stable, long-term storage mechanism for atmospheric CO2 is the formation of carbonate minerals such as calcite, dolomite and magnesite. The feasibility is demonstrated by the proportion of terrestrial carbon bound in these minerals: at least 40,000 times more carbon is present in carbonate rocks than in the atmosphere. Atmospheric carbon can be transformed into carbonate minerals either ex situ, as part of an industrial process, or in situ, by injection into geological formations where the elements required for carbonate-mineral formation are present. Many challenges in mineral carbonation remain to be resolved. They include overcoming the slow kinetics of mineral-fluid reactions, dealing with the large volume of source material required and reducing the energy needed to hasten the carbonation process. To address these challenges, several pilot studies have been launched, Including the CarbFix program in Iceland. The aim of CarbFix is to inject CO2 into permeable basaltic rocks In an attempt to form carbonate minerals directly through a coupled dissolution-precipitation process.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by