Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Fluorapatite surface composition in aqueous solution deduced from potentiometric, electrokinetic, and solubility measurements, and spectroscopic observations
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Chaïrat C, Oelkers EH, Schott J, Lartigue JE
  • Publication date:
  • Pagination:
    5888, 5900
  • Journal:
    Geochimica et Cosmochimica Acta
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
The surface chemistry of fluorapatite in aqueous solution was investigated using electrokinetic techniques, potentiometric titrations, solubility measurements, and attenuated total reflection infrared spectroscopy. All methods indicate the formation of Ca/F depleted, P enriched altered layer via exchange reactions between H+ and Ca2+, and OH- and F- at the fluorapatite (FAP) surface. Observations suggest that this leached layer has a di-calcium phosphate (CaHPO4) composition and that it controls the apparent solubility of FAP. Electrokinetic measurements yield an iso-electric point value of 1 ± 0.5 consistent with a negatively charged FAP surface at pH > 1. In contrast, surface titrations give an apparent pH of point of zero charge of ∼7.7, consistent with a positively charged surface at pH < 7.7. These differences are shown to stem from proton consumption by both proton exchange and dissolution reactions at the FAP surface. After taking account for these effects, FAP surface charge is shown to be negative to at least pH 4 by surface titration analysis. © 2007 Elsevier Ltd. All rights reserved.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by