UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Experimental investigation of the effect of dissolution on sandstone permeability, porosity, and reactive surface area
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Jové Colón CF, Oelkers EH, Schott J
  • Publication date:
    15/02/2004
  • Pagination:
    805, 817
  • Journal:
    Geochimica et Cosmochimica Acta
  • Volume:
    68
  • Issue:
    4
  • Status:
    Published
  • Print ISSN:
    0016-7037
Abstract
The temporal permeability, porosity, and reactive surface area evolution during dissolution of nonfractured/clay-free Fontainebleau sandstone cores was measured using a flow through percolation reactor. Four core dissolution experiments, each of ∼1000 h duration, were performed on sandstone cores having initial porosities ranging from 5.1 to 16.6%. All experiments were performed at 80°C and at far from equilibrium conditions using a 0.1 M NaOH input solution with a calculated in situ pH of 11.4. Permeability evolution was determined using Darcy's law together with in situ measured differential pressures. Reactive surface area and porosity evolution were quantified from the mass of Si leaving the core during the experiments. The 5.1 and 8.9% initial porosity sandstone cores experienced porosity increases of 1.2 and 1.4 percent, respectively, during the experiments. These cores experienced a corresponding permeability increase from 0.27 to 0.74 mD and 0.57 to 0.87 mD, respectively. In contrast, the 10.6 and 16.6% initial porosity sandstone cores had permeabilities that were essentially constant during the dissolution experiments despite porosity increases of 6.3 and 2.5%, respectively. Only the 5.1% initial porosity core experienced a permeability evolution roughly consistent with a cubic law dependence on porosity. Reactive surface areas increased during the experiments for all cores; those for the 5.1, 10.6, and 16.6% initial porosity cores increased by 21±6% for each percent porosity increase. The reactive surface area of the 8.9% initial porosity core, however, increased by 148% for each percent porosity increase. These results suggest that dissolution of the 8.9% initial porosity core opened a substantial number of isolated pores, exposing new quartz grain surfaces to dissolution. © 2004 Elsevier Ltd.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by