Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Can T2-spectroscopy resolve submicrometer axon diameters?
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Kaden E, Alexander DC
  • Publication date:
  • Pagination:
    607, 618
  • Journal:
    Information processing in medical imaging : proceedings of the ... conference
  • Volume:
  • Status:
  • Print ISSN:
The microscopic geometry of white matter carries rich information about brain function in health and disease. A key challenge for medical imaging is to estimate microstructural features noninvasively. One important parameter is the axon diameter, which correlates with the conduction time delay of action potentials and is affected by various neurological disorders. Diffusion magnetic resonance (MR) experiments are the method of choice today when we aim to recover the axon diameter distribution, although the technique requires very high gradient strengths in order to assess nerve fibers with one micrometer or less in diameter. In practice in-vivo brain imaging is only sensitive to the largest axons, not least due to limitations in the human physiology which tolerates only moderate gradient strengths. This work studies, from a theoretical perspective, the feasibility of T2-spectroscopy to resolve submicrometer tissue structures. Exploiting the surface relaxation effect, we formulate a plausible biophysical model relating the axon diameter distribution to the T2-weighted signal, which is based on a surface-to-volume ratio approximation of the Bloch-Torrey equation. Under a certain regime of bulk and surface relaxation coefficients, our simulation results suggest that it might be possible to reveal axons smaller than one micrometer in diameter.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by