Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Learning imaging biomarker trajectories from noisy Alzheimer’s disease data using a Bayesian multilevel model
  • Publication Type:
  • Authors:
    Oxtoby NP, Young AL, Fox NC, Daga P, Cash DM, Ourselin S, Schott JM, Alexander DC
  • Publication date:
  • Pagination:
    85, 94
  • Published proceedings:
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  • Volume:
  • Status:
  • Print ISSN:
© Springer International Publishing Switzerland 2014.Characterising the time course of a disease with a protracted incubation period ultimately requires dense longitudinal studies, which can be prohibitively long and expensive. Considering what can be learned in the absence of such data, we estimate cohort-level biomarker trajectories by fitting cross-sectional data to a differential equation model, then integrating the fit. These fits inform our new stochastic differential equation model for synthesising individual-level biomarker trajectories for prognosis support. Our Bayesian multilevel regression model explicitly includes measurement noise estimation to avoid regression dilution bias. Applicable to any disease, here we perform experiments on Alzheimer’s disease imaging biomarker data — volumes of regions of interest within the brain. We find that Alzheimer’s disease imaging biomarkers are dynamic over timescales from a few years to a few decades.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by