UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Data dependent priors in PAC-Bayes bounds
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Conference Proceeding
  • Authors:
    Shawe-Taylor J, Parrado-Hern√°ndez E, Ambroladze A
  • Publication date:
    01/01/2010
  • Pagination:
    231, 240
  • Journal:
    Proceedings of COMPSTAT 2010 - 19th International Conference on Computational Statistics, Keynote, Invited and Contributed Papers
  • Status:
    Published
Abstract
One of the central aims of Statistical Learning Theory is the bounding of the test set performance of classifiers trained with i.i.d. data. For Support Vector Machines the tightest technique for assessing this so-called generalisation error is known as the PAC-Bayes theorem. The bound holds independently of the choice of prior, but better priors lead to sharper bounds. The priors leading to the tightest bounds to date are spherical Gaussian distributions whose means are determined from a separate subset of data. This paper gives another turn of the screw by introducing a further data dependence on the shape of the prior: The separate data set determines a direction along which the covariance matrix of the prior is stretched in order to sharpen the bound. In addition, we present a classification algorithm that aims at minimizing the bound as a design criterion and whose generalisation can be easily analysed in terms of the new bound. The experimental work includes a set of classification tasks preceded by a bound-driven model selection. These experiments illustrate how the new bound acting on the new classifier can be much tighter than the original PAC-Bayes Bound applied to an SVM, and lead to more accurate classifiers. © Springer-Verlag Berlin Heidelberg 2010.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by