UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Constitutive PtdIns(3,4,5)P3 synthesis promotes the development and survival of early mammalian embryos.
Abstract
Mammalian preimplantation embryos develop in the oviduct as individual entities, and can develop and survive in vitro, in defined culture media lacking exogenous growth factors or serum. Therefore, early embryos must generate intrinsic signals that promote their development and survival. In other cells, activation of class I phosphoinositide 3-kinase (PI3K) is a universal mechanism to promote cell proliferation and survival. Here, we examined whether PI3K is intrinsically activated during preimplantation development. Using GFP-tagged pleckstrin homology domains to monitor PtdIns(3,4,5)P(3) synthesis, we show that PI3K is constitutively activated in mouse preimplantation embryos. E-cadherin ligation promotes PtdIns(3,4,5)P(3) synthesis at sites of blastomere adhesion at all cleavage stages. In addition, in culture conditions that promote autocrine signalling, a second pool of PtdIns(3,4,5)P(3) is generated in the apical membrane of early stage blastomeres. We show that constitutive PtdIns(3,4,5)P(3) synthesis is necessary for optimal development to blastocyst and to prevent large-scale apoptosis at the time of cavitation.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
Cell & Developmental Biology
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by