Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Molecular physics of a polymer engineering instability: experiments and computation.
Entangled polymer melts exhibit a variety of flow instabilities that limit production rates in industrial applications. We present both experimental and computational findings, using flow of monodisperse linear polystyrenes in a contraction--expansion geometry, which illustrate the formation and development of one such flow instability. This viscoelastic disturbance is first observed at the slit outlet and subsequently produces large-scale fluid motions upstream. A numerical linear stability study using the molecular structure based Rolie-Poly model confirms the instability and identifies important parameters within the model, which gives physical insight into the underlying mechanism. Chain stretch was found to play a critical role in the instability mechanism, which partially explains the effectiveness of introducing a low-molecular weight tail into a polymer blend to increase its processability.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
Dept of Mathematics
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by