UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Detecting spammers on social networks
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Conference Proceeding
  • Authors:
    Stringhini G, Kruegel C, Vigna G
  • Publication date:
    01/12/2010
  • Pagination:
    1, 9
  • Journal:
    Proceedings - Annual Computer Security Applications Conference, ACSAC
  • Status:
    Published
  • Print ISSN:
    1063-9527
Abstract
Social networking has become a popular way for users to meet and interact online. Users spend a significant amount of time on popular social network platforms (such as Facebook, MySpace, or Twitter), storing and sharing a wealth of personal information. This information, as well as the possibility of contacting thousands of users, also attracts the interest of cybercriminals. For example, cybercriminals might exploit the implicit trust relationships between users in order to lure victims to malicious websites. As another example, cybercriminals might find personal information valuable for identity theft or to drive targeted spam campaigns. In this paper, we analyze to which extent spam has entered social networks. More precisely, we analyze how spammers who target social networking sites operate. To collect the data about spamming activity, we created a large and diverse set of "honey-profiles" on three large social networking sites, and logged the kind of contacts and messages that they received. We then analyzed the collected data and identified anomalous behavior of users who contacted our profiles. Based on the analysis of this behavior, we developed techniques to detect spammers in social networks, and we aggregated their messages in large spam campaigns. Our results show that it is possible to automatically identify the accounts used by spammers, and our analysis was used for take-down efforts in a real-world social network. More precisely, during this study, we collaborated with Twitter and correctly detected and deleted 15,857 spam profiles. © 2010 ACM.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by