UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Déjà Q: Using dual systems to revisit q-type assumptions
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Conference Proceeding
  • Authors:
    Chase M, Meiklejohn S
  • Publication date:
    01/01/2014
  • Pagination:
    622, 639
  • Journal:
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  • Volume:
    8441 LNCS
  • Status:
    Published
  • Print ISSN:
    0302-9743
Abstract
After more than a decade of usage, bilinear groups have established their place in the cryptographic canon by enabling the construction of many advanced cryptographic primitives. Unfortunately, this explosion in functionality has been accompanied by an analogous growth in the complexity of the assumptions used to prove security. Many of these assumptions have been gathered under the umbrella of the "uber-assumption," yet certain classes of these assumptions - namely, q-type assumptions - are stronger and require larger parameter sizes than their static counterparts. In this paper, we show that in certain bilinear groups, many classes of q-type assumptions are in fact implied by subgroup hiding (a well-established, static assumption). Our main tool in this endeavor is the dual-system technique, as introduced by Waters in 2009. As a case study, we first show that in composite-order groups, we can prove the security of the Dodis-Yampolskiy PRF based solely on subgroup hiding and allow for a domain of arbitrary size (the original proof only allowed a logarithmically-sized domain). We then turn our attention to classes of q-type assumptions and show that they are implied - when instantiated in appropriate groups - solely by subgroup hiding. These classes are quite general and include assumptions such as q-SDH. Concretely, our result implies that every construction relying on such assumptions for security (e.g., Boneh-Boyen signatures) can, when instantiated in appropriate composite-order bilinear groups, be proved secure under subgroup hiding instead. © 2014 International Association for Cryptologic Research.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by