UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Growth, electronic properties and applications of nanodiamond
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Williams OA, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman RB
  • Publisher:
    Elsevier B.V.
  • Publication date:
    2008
  • Pagination:
    1080, 1088
  • Journal:
    Diamond and Related Materials
  • Volume:
    17
  • Issue:
    7-10
  • Print ISSN:
    0925-9635
  • Keywords:
    diamond, properties, nanostructure, nanotechnology
Abstract
Nanodiamond or nanocrystalline diamond is a broad term used to describe a plethora of materials. It is generally accepted that nanocrystalline diamond (NCD) consists of facets less than 100 nm in size, whereas a second term “ultrananocrystalline diamond” (UNCD) has been coined to describe material with grain sizes less than 10 nm. These differences in morphology originate in the growth process. Conventional hydrogen rich gas phases produce facetted diamond with grain size proportional to film thickness and low sp2 content. If these films are thin the grains can be less than 100 nm and hence NCD. By starving the plasma of hydrogen, the reduction in etching of sp2 can lead to re-nucleation. At the extreme this results in very small grain sizes of around 3–5 nm, UNCD. The electronic properties of these two materials are vastly different. NCD is basically very thin microcrystalline diamond and thus can be doped with boron. It is intrinsically transparent, with absorption increasing with doping level. UNCD is highly absorbing due to its higher sp2 content, and exhibits a reduced bandgap due to disorder. By adding nitrogen to the gas phase, the density of states within the bandgap increases and ultimately metallic conductivity can be achieved. This conductivity is n-type but not doping
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Authors
Dept of Electronic & Electrical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by