Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A method for the comparison of biomechanical breast models
  • Publication Type:
  • Authors:
    Tanner C, Degenhard A, Schnabel JA, Smith AC, Hayes C, Sonoda LI, Leach MO, Hose DR, Hill DLG, Hawkes DJ
  • Publisher:
    IEEE Computer Society
  • Publication date:
  • Place of publication:
    Los Alamitos, US
  • Pagination:
    11, 18
  • Published proceedings:
    IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, MMBIA 2001
  • Editors:
    Staib L
  • ISBN-10:
  • Status:
Biomechanical models of the breast are being developed for a wide range of applications including image alignment tasks to improve diagnosis and therapy monitoring, imaging related studies of the biomechanical properties of lesions, and image guided interventions. In this paper we present a method to evaluate the accuracy with which biomechanical breast models based on finite element methods (FEM) can predict the displacements of tissue within the breast. Our experimental data was obtained by compressing the breast of a volunteer in a controlled manner, and the acquisition of MR images of the breast before and after compression. Non-rigid registration of these two MR volumes together with interactive identification of corresponding landmarks provided an independent estimate of the displacements. In addition, the non-rigid registration provided estimates of the displacements of the surface points (skin points) of the breast. The accuracy of the FEM models was evaluated using all or a subset of these surface displacements as boundary conditions. The influence of pectoral muscle movement on the performance of the FEM models was also investigated. Our initial results indicate that the accurate setting of the boundary conditions is more important than the actual choice of elastic properties in these compression scenarios. With the complete boundary conditions, the displacements agreed to within 2.6 mm for all FEM models on average. Assuming no movement at the posterior or the medial side of the breast, the accuracy of the FEM models deteriorated to worse than 4.6 mm for all models.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Med Phys & Biomedical Eng
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by