UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
A normalised seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth
Abstract
The strontium isotope composition of seawater is strongly influenced on geological time scales by changes in the rates of continental weathering relative to ocean crust alteration. However, the potential of the seawater 87Sr/86Sr curve to trace globally integrated chemical weathering rates has not been fully realised because ocean 87Sr/86Sr is also influenced by the isotopic evolution of Sr sources to the ocean. A preliminary attempt is made here to normalise the seawater 87Sr/86Sr curve to plausible trends in the 87Sr/86Sr ratios of the three major Sr sources: carbonate dissolution, silicate weathering and submarine hydrothermal exchange. The normalised curve highlights the Neoproterozoic-Phanerozoic transition as a period of exceptionally high continental influence, indicating that this interval was characterised by a transient increase in global weathering rates and/or by the weathering of unusually radiogenic crustal rocks. Close correlation between the normalised 87Sr/86Sr curve, a published seawater δ34S curve and atmospheric pCO2 models is used here to argue that elevated chemical weathering rates were a major contributing factor to the steep rise in seawater 87Sr/86Sr from 650 Ma to 500 Ma. Elevated weathering rates during the Neoproterozoic-Cambrian interval led to increased nutrient availability, organic burial and to the further oxygenation of Earth's surface environment. Use of normalised seawater 87Sr/86Sr curves will, it is hoped, help to improve future geochemical models of Earth System dynamics.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Earth Sciences
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by