UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Imagining the Unseen: Stability-based Cuboid Arrangements for Scene Understanding
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Shao T, Monszpart A, Zheng Y, Koo B, Xu W, Zhou K, Mitra NJ
  • Publisher:
    Association for Computing Machinery (ACM)
  • Publication date:
    19/11/2014
  • Journal:
    ACM Transactions on Graphics
  • Editors:
    Chen B,Gao W,Guo B
  • Country:
    Shenzen
  • Print ISSN:
    1557-7368
  • Keywords:
    box world, proxy arrangements, physical stability, shape analysis
Abstract
Missing data due to occlusion is a key challenge in 3D acquisition, particularly in cluttered man-made scenes. Such partial information about the scenes limits our ability to analyze and understand them. In this work we abstract such environments as collections of cuboids and hallucinate geometry in the occluded regions by globally analyzing the physical stability of the resultant arrangements of the cuboids. Our algorithm extrapolates the cuboids into the unseen regions to infer both their corresponding geometric attributes (e.g., size, orientation) and how the cuboids topologically interact with each other (e.g., touch or fixed). The resultant arrangement provides an abstraction for the underlying structure of the scene that can then be used for a range of common geometry processing tasks. We evaluate our algorithm on a large number of test scenes with varying complexity, validate the results on existing benchmark datasets, and demonstrate the use of the recovered cuboid-based structures towards object retrieval, scene completion, etc.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by