UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Multiset rewriting over Fibonacci and Tribonacci numbers
Abstract
We show how techniques from the formal logic, can be applied directly to the problems studied completely independently in the world of combinatorics, the theory of integer partitions. We characterize equinumerous partition ideals in terms of the minimal elements generating the complementary order filters. Here we apply a general rewriting methodology to the case of filters having overlapping minimal elements. In addition to a 'bijective proof' for Zeckendorf-like theorems - that every positive integer is uniquely representable within the Fibonacci, Tribonacci and k-Bonacci numeration systems, we establish 'bijective proofs' for a new series of partition identities related to Fibonacci, Tribonacci and k-step Fibonacci numbers. The main result is proved with the help of a multiset rewriting system such that the system itself and the system consisting of its reverse rewriting rules, both have the Church-Rosser property, which provides an explicit bijection between partitions of two different types (represented by the two normal forms). © 2014 Elsevier Inc.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Computer Science
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by