Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Instrumented elbow orthosis
  • Publication Type:
  • Authors:
    Morgado D, Suzuki T, Smitham P, Holloway CSM, Hill D
  • Name of conference:
    European Conference of the International Federation for Medical and Biological Engineering (MBEC 2014)
  • Conference place:
    Dubrovnik, Croatia
  • Conference start date:
  • Conference finish date:
Although work on exoskeleton technology started as early as in the 1960’s, it is mostly recognized and used as devices to aid in the rehabilitation process and for military purposes. The use of wearable and portative exoskeleton technology for functional compensation is less well understood for the upper limbs in comparison with the lower limbs. A review of current upper limb exoskeleton technology suggests that there is limited attention to the interaction between the exoskeleton and the human. In order to control or compensate movement, exoskeletons transfer forces through a physical coupling between the device and the human limb (exoskeleton-human interface). This exoskeleton-human interface is a physical coupling that requires the consideration of optimal and safe force transfer (magnitude, direction and locations) as well as user comfort; considerations that have been overlooked by current exoskeleton technology. Before implementing a highly specialized electronic control system between the user and exoskeleton, it is necessary to design a truly wearable, safe and comfortable mechanical structure. The aims of this study are to modify a commercial elbow orthesis by instrumenting it with a control system and force sensors in order to measure the following parameters: dynamic stiffness and pressure between the orthosis and the human skin. This instrumented orthosis is further controlled by the user through a mouth switch. The instrumented orthosis is employed to monitor forces and stiffness during activities of daily life which involve self-care and domestic life for a fully abled person. Upper limb exoskeleton designers could use this data to fabricate technology that exerts forces that are safe and within what the end user considers comfortable. This modified orthosis will be used in a future study in individuals with spinal cord injury from C5 to C8 levels.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Computer Science
Dept of Computer Science
Dept of Civil, Environ &Geomatic Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by