UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Measures of folding applied to the development of the human fetal brain
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Batchelor PG, Castellano Smith AD, Hill DLG, Hawkes DJ, Cox TCS, Dean AF
  • Publication date:
    01/08/2002
  • Pagination:
    953, 965
  • Journal:
    IEEE Transactions on Medical Imaging
  • Volume:
    21
  • Issue:
    8
  • Status:
    Published
  • Print ISSN:
    0278-0062
Abstract
Previous work has suggested the existence of differences between the cerebral cortex of normal individuals, and those of patients with diseases such as epilepsy and schizophrenia. These shape abnormalities may be of developmental origin. Improved shape measures could provide useful tools for neuroscience research and patient diagnosis. We consider the theoretically desirable properties of measures of brain shape. We have implemented seven measures, three from the neuroscience literature, and four new to this field. Three of the measures are zero-order and four are second-order with respect to the surface. We validate the measures using simple geometrical shapes, and a collection of magnetic resonance scans of ten histologically normal ex vive fetal brains with gestational ages from 19-42 weeks. We then apply the measures to MR scans from two histologically abnormal ex vive brains. We demonstrate that our implementation of the measures is sensitive to anatomical variability rather than to the discreteness of the image data. All the measures were sensitive to changes in shape during fetal development. Several of the measures could distinguish between the normal and abnormal fetal brains. We propose a multivariate approach to studying the shape of the cerebral cortex, in which both zero-order and second-order measures are used to quantify folding.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by