Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at http://www.ucl.ac.uk/finance/research/post_award/post_award_contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Validation of a two- to three-dimensional registration algorithm for aligning preoperative CT images and intraoperative fluoroscopy images
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Penney GP, Batchelor PG, Hill DLG, Hawkes DJ, Weese J
  • Publication date:
  • Pagination:
    1024, 1032
  • Journal:
    Medical Physics
  • Volume:
  • Issue:
  • Status:
  • Print ISSN:
We present a validation of an intensity based two- to three-dimensional image registration algorithm. The algorithm can register a CT volume to a single-plane fluoroscopy image. Four routinely acquired clinical data sets from patients who underwent endovascular treatment for an abdominal aortic aneurysm were used. Each data set was comprised of two intraoperative fluoroscopy images and a preoperative CT image. Regions of interest (ROI) were drawn around each vertebra in the CT and fluoroscopy images. Each CT image ROI was individually registered to the corresponding ROI in the fluoroscopy images. A cross validation approach was used to obtain a measure of registration consistency. Spinal movement between the preoperative and intraoperative scene was accounted for by using two fluoroscopy images. The consistency and robustness of the algorithm when using two similarity measures, pattern intensity and gradient difference, was investigated. Both similarity measures produced similar results. The consistency values were rotational errors below 0.74° and in-plane translational errors below 0.90 mm. These errors approximately relate to a two-dimensional projection error of 1.3 mm. The failure rate was less than 8.3% for three of the four data sets. However, for one of the data sets a much larger failure rate (28.5%) occurred. © 2001 American Association of Physicists in Medicine.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Dept of Med Phys & Biomedical Eng
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by