UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

http://www.ucl.ac.uk/finance/secure/research/post_award
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
ENFOLDing: Explaining Modelling and Forecasting Global Dynamics
EPSRC funded - Most of the science which is used to inform policy makers about future social and economic events, has been built for systems that are local rather than global and are assumed to behave in ways that are relatively tractable and thus responsive to policy initiatives. Any examination of the degree to which such policy-making has been successful or even informative yields a very mixed picture with such interventions being only partly effective at best, and positively disruptive at worst. Human policy-making shows all the characteristics of a complex system. Many of our interventions make problems worse rather than better, leading to the oft-quoted accusation that "the solution is part of the problem". Complexity theory recognizes this dilemma. In this research programme we will develop new forms of science which address the most difficult of human problems: those that involve global change where there is no organised constituency and whose agencies are largely regarded as being ineffective. We will argue that global systems tend to be treated in isolation from one another and that the unexpected dynamics that characterise their behaviour is due to their coupling and integration that is all too often ignored. To demonstrate this dynamics and to develop appropriate policy responses, we will study four related global systems: trade, migration, security (which includes crime, terrorism and military disputes) and development aid, which tends to be determined as a consequence of these three individual systems. The idea that this dynamics results from coupling suggests that, to get a clear view of their dynamics and a better understanding of global change, we need to develop integrated and coupled models whose dynamics can be described in the conventional (and possibly not so conventional) language of complexity theory: chaos, turbulence, bifurcations, catastrophes, and phase transitions We will develop three related styles of model: spatial interaction models embedded in predator-prey like frameworks which generate bifurcations in system behaviour, reaction diffusion models that link location to flow, and network models in which epidemic-like diffusion processes can be used to explain how events cascade into one another. We will apply spatial interaction models to trade and migration, reaction diffusion to military disputes and terrorism, and network models to international crime. We will extend these models to incorporate the generation of qualitative new events such as the emergence of new entities e.g. countries, coupling them together in diverse ways. We will ultimately develop a generic framework for a coupled global dynamics that spans many spatial and temporal scales and pertains to different systems whose behaviours can be simulated both quantitatively and qualitatively. Our models will be calibrated to data which we will assemble during the project and which we already know exists in usable form. We will develop various models which incorporate all these ideas into a global intelligence system to inform global policy makers about future events. This system (and we intend many versions of it) will allow policy makers to think the unthinkable and to explore numerous "what if" questions with respect to our four key global systems: trade, migration, security and development, while simultaneously enabling global dynamics to act as a coupling of these systems. We will begin developing these models for the UK in terms of the rest of the world but then extend this to include all the key countries and events relevant to this global dynamics. Our partners who, in the first instance are UK government departments and multinational companies with a global reach, will champion this extension to the global arena. The programme is based on ten academic faculty at UCL spanning a wide range of centres and departments.
14 Researchers
 More search options
Status: Active
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by