UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
On the problem of boundaries and scaling for urban street networks
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Journal Article
  • Authors:
    Masucci AP, Arcaute E, Hatna E, Stanilov K, Batty M
  • Publication date:
    06/10/2015
  • Journal:
    Journal of the Royal Society Interface
  • Volume:
    12
  • Issue:
    111
  • Status:
    Published
  • Print ISSN:
    1742-5689
Abstract
© 2015 The Authors. Urban morphology has presented significant intellectual challenges to mathematicians and physicists ever since the eighteenth century, when Euler first explored the famous Königsberg bridges problem. Many important regularities and scaling laws have been observed in urban studies, including Zipf's law and Gibrat's law, rendering cities attractive systems for analysis within statistical physics. Nevertheless, a broad consensus on how cities and their boundaries are defined is still lacking. Applying an elementary clustering technique to the street intersection space, we show that growth curves for the maximum cluster size of the largest cities in the UK and in California collapse to a single curve, namely the logistic. Subsequently, by introducing the concept of the condensation threshold, we show that natural boundaries of cities can be well defined in a universal way. This allows us to study and discuss systematically some of the regularities that are present in cities. We show that some scaling laws present consistent behaviour in space and time, thus suggesting the presence of common principles at the basis of the evolution of urban systems.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
There are no UCL People associated with this publication
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by