UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Mitral Valve dynamics in structural and fluid-structure interaction models.
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article
  • Authors:
    Lau K, Diaz-Zuccarini V, Scambler P, Burriesci G
  • Publication date:
    2010
  • Pagination:
    1057, 1064
  • Journal:
    Medical Engineering and Physics
  • Volume:
    32
  • Issue:
    9-2
  • Status:
    Published
  • Keywords:
    Biomechanics, Finite element, Fluid-structure interaction, Heart valves, Mitral valve
Abstract
Modelling and simulation of heart valves is a challenging biomechanical problem due to anatomical variability, pulsatile physiological pressure loads and 3D anisotropic material behaviour. Current valvular models based on the finite element method can be divided into: those that do model the interaction between the blood and the valve (fluid-structure interaction or 'wet' models) and those that do not (structural models or 'dry' models). Here an anatomically sized model of the mitral valve has been used to compare the difference between structural and fluid-structure interaction techniques in two separately simulated scenarios: valve closure and a cardiac cycle. Using fluid-structure interaction, the valve has been modelled separately in a straight tubular volume and in a U-shaped ventricular volume, in order to analyse the difference in the coupled fluid and structural dynamics between the two geometries. The results of the structural and fluid-structure interaction models have shown that the stress distribution in the closure simulation is similar in all the models, but the magnitude and closed configuration differ. In the cardiac cycle simulation significant differences in the valvular dynamics were found between the structural and fluid-structure interaction models due to difference in applied pressure loads. Comparison of the fluid domains of the fluid-structure interaction models have shown that the ventricular geometry generates slower fluid velocity with increased vorticity compared to the tubular geometry. In conclusion, structural heart valve models are suitable for simulation of static configurations (opened or closed valves), but in order to simulate full dynamic behaviour fluid-structure interaction models are required.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Dept of Mechanical Engineering
Author
Dept of Mechanical Engineering
Author
UCL GOS Institute of Child Health
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by