UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Simulating flight routing network responses to airport capacity constraints in the US
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Conference Proceeding
  • Authors:
    Evans AD, Schäfer A
  • Publication date:
    01/12/2009
  • Journal:
    9th AIAA Aviation Technology, Integration and Operations (ATIO) Conference, Aircraft Noise and Emissions Reduction Symposium (ANERS)
  • Status:
    Published
Abstract
This paper presents a model which simulates changes in the airline system flight routing network under alternative policy scenarios. The model simulates a game between airlines, in which each airline increases flight frequency in order to maximize its own profit. The underlying modeling framework allows the relationships between changes in fares, passenger demand, infrastructure capacity constraints, flight delays, flight frequencies, and routing network to be simulated. The model is validated for a network of airports in the United States in 2005, before being applied to simulate changes in the same network through 2030 under two policy scenarios. Both scenarios limit airport capacity expansion: (i) in the whole system, and (ii) at Chicago O'Hare International, a primary hub airport, only. Simulated passenger demand, air traffic, flight delays, system CO2 emissions and Chicago O'Hare NOx emissions are compared to a baseline scenario in which airport capacity is expanded as planned by the FAA. Despite a significant impact on flight delays, the results show little impact of airport capacity constraints on system passenger demand, air traffic growth or CO2 emissions, but show a shift of connecting traffic away from congested hub airports at which capacity is limited to other less congested hub airports, thus reducing traffic growth at these congested airports, and reducing the growth in NOx emissions. Copyright © 2009 by University of Cambridge.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Bartlett School Env, Energy & Resources
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by