UCL  IRIS
Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data grouped in the sections named "Externally Awarded" or "Internally Disbursed" (shown on the profile page) to your Research Finance Administrator. Your can find your Research Finance Administrator at https://www.ucl.ac.uk/finance/research/rs-contacts.php by entering your department
Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
Publication Detail
Supporting security and adequacy in future energy systems: The need to enhance long-term energy system models to better treat issues related to variability
  • Publication Type:
    Journal article
  • Publication Sub Type:
    Article in Press
  • Authors:
    Welsch M, Howells M, Hesamzadeh MR, Ó Gallachóir B, Deane P, Strachan N, Bazilian M, Kammen DM, Jones L, Strbac G, Rogner H
  • Publication date:
    26/08/2014
  • Journal:
    International Journal of Energy Research
  • Status:
    Accepted
  • Print ISSN:
    0363-907X
Abstract
As the shares of variable renewable generation in power systems increase, so does the need for, inter alia, flexible balancing mechanisms. These mechanisms help ensure the reliable operation of the electricity system by compensating for fluctuations in supply or demand. However, a focus on short-term balancing is sometimes neglected when assessing future capacity expansions with long-term energy system models. Developing heuristics that can simulate short-term system issues is one way of augmenting the functionality of such models. To this end, we present an extended functionality to the Open Source Energy Modelling System (OSeMOSYS), which captures the impacts of short-term variability of supply and demand on system adequacy and security. Specifically, we modelled the system adequacy as the share of wind energy is increased. Further, we enable the modelling of operating reserve capacities required for balancing services. The dynamics introduced through these model enhancements are presented in an application case study. This application indicates that introducing short-term constraints in long-term energy models may considerably influence the dispatch of power plants, capacity investments, and, ultimately, the policy recommendations derived from such models. © 2014 John Wiley & Sons, Ltd.
Publication data is maintained in RPS. Visit https://rps.ucl.ac.uk
 More search options
UCL Researchers
Author
Bartlett School Env, Energy & Resources
University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by