Institutional Research Information Service
UCL Logo
Please report any queries concerning the funding data shown on the profile page to:

Please report any queries concerning the student data shown on the profile page to:

Email: portico-services@ucl.ac.uk

Help Desk: http://www.ucl.ac.uk/ras/portico/helpdesk
 More search options
Dr Peter Kirkwood
Rm 522, Queen Square House
Sobell Dept of Motor Neuroscience and Movement Disorders
UCL Institute of Neurology, Queen Square
  • Emeritus Reader in Neurophysiology
  • Institute of Neurology
  • Faculty of Brain Sciences
Research Groups
Research Themes
Research Summary
The core interest in this laboratory for many years has been the study of the control of muscles involved in respiratory movements. Because this motor act persists in experimental animals under anaesthesia, including under neuromuscular blockade, we can study the behaviour, connections and morphology of functionally defined neurones. The neurones of interest are the motoneurones and interneurones of the thoracic spinal cord and their antecedent neurones in the pathway conveying the respiratory drive from the medulla, the respiratory bulbospinal neurones. As for most neurones in motor systems, all of these neurones are multifunctional, but the stereotyped repetitive pattern of activity during respiration allows the assignment of specific roles to individual neurones during that particular motor act. The measurement of connections between individual neurones by spike-triggered averaging and cross-correlation are important experimental techniques for this. The development of these techniques and their interpretation has been a central theme in the work of the laboratory. For characterizing the interneurones we have more recently used morphological methods, including immunocytochemistry in conjunction with intracellular labelling.

It has always been the intention that such investigations should yield results that are useful in the understanding of clinical conditions, including spinal cord injury (for instance Kirkwood et al. 1984, J.Physiol. 350 : 225-25l). In more recent years the direction of research has shifted more firmly in the direction of spinal cord injury and repair. One important reason for this was the results from several laboratories around the world, where success at achieving regeneration of nerve fibres across experimental lesions of the spinal cord has been achieved. In the 1980s this was only a distant prospect. When it became a reality it also became clear that good neurophysiology was a necessary, but largely missing element in the studies performed. Another reason was the realisation that the same factors which made the respiratory system a useful one for motor control studies made it equally valuable as an experimental system for developing techniques for spinal cord repair. In current work we are therefore investigating neural connections in the thoracic spinal cord, their plasticity and, hopefully, their regeneration in the situation of experimental spinal cord injury.
Please report any queries concerning the data shown on this page to:

University College London - Gower Street - London - WC1E 6BT Tel:+44 (0)20 7679 2000

© UCL 1999–2011

Search by